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We consider the problem of microstructural evolution in binary alloys in two
dimensions. The microstructure consists of arbitrarily shaped precipitates embed-
ded in a matrix. Both the precipitates and the matrix are taken to be elastically
anisotropic, with different elastic constants. The interfacial energy at the precipitate—
matrix interfaces is also taken to be anisotropic. This is an extension of the inho-
mogeneous isotrpic problem considered by H.-J.ekal. (1997,J. Comput. Phys.

131, 109). Evolution occurs via diffusion among the precipitates such that the to-
tal (elastic plus interfacial) energy decreases; this is accounted for by a modified
Gibbs—Thomson boundary condition at the interfaces. The coupled diffusion and
elasticity equations are reformulated using boundary integrals. An efficient precon-
ditioner for the elasticity problem is developed based on a small scale analysis of
the equations. The solution to the coupled elasticity-diffusion problem is imple-
mented in parallel. Precipitate evolution is tracked by special non-stiff time stepping
algorithms that guarantee agreement between physical and numerical equilibria. Re-
sults show that small elastic inhomogeneities in cubic systems can have a strong
effect on precipitate evolution. For example, in systems where the elastic constants
of the precipitates are smaller than those of the matrix, the particles move toward
each other, where the rate of approach depends on the degree of inhomogeneity.
Anisotropic surface energy can either enhance or reduce this effect, depending on
the relative orientations of the anisotropies. Simulations of the evolution of multiple
precipitates indicate that the elastic constants and surface energy control precipitate
morphology and strongly influence nearest neighbor interactions. However, for the
parameter ranges considered, the overall evolution of systems with large numbers of
precipitates is primarily driven by the overall reduction in surface energy. Finally,
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we consider a problem related to the microstructure of fully orthotropic geological
materials. © 2000 Academic Press
Key Wordsmicrostructure; anisotropy; inhomogeneity; elasticity, diffusion.

1. INTRODUCTION

In this paper, we consider the numerical solution for the problem of microstructt
evolution in binary metal alloys that are produced by a solid-state phase transformatior
described in [15], these transformations occur when the temperature of a uniform mixtu
materials is lowered into a regime where a two-phase mixture of solids is stable. The sy
responds by nucleating second phase particles (precipitates) which evolve by the difft
of matter among the distinct crystal phases until equilibrium is reestablished or diffusio
stopped by further lowering of temperature. Because the resulting two-pti@estructure
is a major variable in setting the macroscopic properties of the alloy (i.e., stiffness, strer
and toughness), the transformation process is the basis for the manufacturing of alloys
as steels and superalloys.

The importance of microstructure in setting the properties of the alloy is seen by
following example. In many alloys (especially those used at high temperatures), the
anin situ coarsening process in which a dispersion of very small precipitates evolves
system consisting of a few very large precipitates in order to decrease the surface ene
the system. This coarsening severely degrades the properties of the alloy and can lea
service failures.

The details of this coarsening process depend strongly on the elastic properties and ¢
structures of the alloy components. Experimental observations of the diffusional evolu
of nickel-based superalloy microstructures show cuboidal precipitates aligned in spe
crystallographic orientations. This structure arises because of the elastic fields gene
by the misfit between the precipitate and matrix crystal lattices and is a reflection of
competition between the elastic and surface energies in lowering the total energy o
system (i.e., the sum of the surface and elastic energies). See, for example, [1, 2-
28, 13, 6, 46]. There is hope that by carefully choosing the alloy components, it may
possible to use the elastic fields to improve material performance over time through b
understanding and control of the transformation process.

In this paper, we investigate the influence of elastic stresses on the diffusional mc
of precipitates in the two-phase system in two space dimensions. The precipitate-m
interfaces are assumed to be sharp and we consider the precipitate and the surrounding
phases to be both elasticaliypisotropicand to have different elastic constants (elasticall
inhomogeneoysin order to more fully investigate the role of crystalline anisotropy on tt
transformation process, we also consider anisotropic surface energies at matrix—preci
interfaces. This is, to our knowledge, the first time both anisotropy and inhomogeneity t
been included in a boundary integral (sharp interface) simulation of precipitate mot
One of the features we observe in our simulations is that even small inhomogeneities
strongly influence precipitate evolution.

Most previous work on simulating microstructural evolution in elastic media has focu:
either on the case of homogeneous elasticity with cubic anisotropy, e.g., [43, 41, 42
45, 44] or inhomogeneous, isotropic elasticity, e.g., [15, 20]. In the former, the elastic c
stants of the two phases are anisotropic, with cubic symmetry, but are identical (elasti
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homogeneous) in the two phases. This case is much easier to treat than the inhomoge
case because the elastic fields can be calculated by direct calculation of an integral a
it is not necessary to solve any equations to obtain the elastic fields [43, 41, 42]. In
latter case, the elastic constants of the two phases are different but the elasticity is ass
to be isotropic. Even in this isotropic setting, the computation of elastic fields is co:
because of the need to solve boundary integral equations over all the precipitate-m
interfaces. Joet al.[20] developed an efficient preconditioner for these boundary integ
equations and applied a non-stiff time stepping method to successfully track the evolt
of microstructures for a relatively large number of particles (approximately 20).

Recently, Schmidtand Gross [37, 38, 39], Orlikowstal.[36, 31], Liand Chen [23, 24],
and Lee [18, 19, 17] have reported results for elastically anisotropic and inhomogen
systems. Schmidt and Gross investigated the effect of inhomogeneity on the equilib
shape and stability of a single precipitate (either in all of space or in a periodic box) in ct
anisotropic media. In their procedure, there is no time evolution as a set of nonlinear e
tions is obtained and solved (using a quasi-Newton method) for the boundary of a preciy
in equilibrium. Orlikowskiet al. investigated the morphological evolution and coarsenir
statistics of elastically inhimogeneous, cubic anisotropic precipitate-matrix systems in |
two and three dimensions. Rather than solving the sharp interface equations, Orliko
et al. used a phase-field (diffuse interface) approach in which mesoscopic field equat
are introduced to mimic the diffusion and elasticity problems. Li and Chen used a si
lar phase field approach to study morphological evolution and splitting of inhomogene
precipitates; see also Nishimori and Onuki [30] among others. In a different approach,
studied the effect of inhomogeneity and anisotropy on particle morphology and evolu
by constructing a “discrete atom method.” In this method, atoms are considered as
connected by elastic springs, and diffusional evolution is simulated by taking a serie
discrete Monte-Carlo steps.

In this paper, we generalize the approach used byeial. [15] to study the case of
anisotropic, inhomogeneous elasticity. The set-up of the problem is the same as in
paper: the microstructure consists of arbitrarily shaped precipitates growing diffusion
in an elastically stressed matrix. The precipitate—matrix interfaces are assumed to be
and coherent. Diffusion of the solute is taken to occur in the matrix only and is assul
to be quasi-static. Elastic stresses may be generated by either far-field applied strains
mismatch strains between the phases. Unlike [15], the phases are elastically anisotropi
different material constants. The elasticity and composition fields are assumed to int
through an elastic energy term in a generalized Gibbs—Thomson boundary condition fo
composition field. This boundary condition includes an anisotropic surface energy follow
Herring [11]. We refer the reader to [15] for further discussion, implications, and referenc

Both the diffusion and elasticity problems for the multi-phase system are reformule
in terms of boundary integral equations; their solutions are used to generate the nc
velocity of the interface through a flux-balance condition. As in [15], we use the mett
of Greenbaunet al. [8] to solve the integral equations for the diffusion problem. Howeve
both the elasticity solver and the non-stiff time stepping algorithms presented here are
although our approach parallels [15].

To solve the elasticity problem, we use a direct boundary integral representation invol
both monopoles and dipoles based on the fundamental solution for orthotropic elast
given by Green [7] and we use the approach of Rizzo and Shippy [34]. Analogousl
the inhomogeneous, isotropic case investigated in [15], four linear integral equations
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obtained for each interface by using the coherency conditions at the interface, i.e., conti
of both displacements and tractions. Although the structure of the equations is simile
the isotropic inhomogeneous case, the integral kernels in the anisotropic case are
complicated. As is the case with the inhomogeneous isotropic elasticity, these inte
equations are not of Fredholm type because they involve Cauchy, logarithmic, and sir
kernels. This leads to the ill-conditioned linear systems. However, following the appro
in [15], we perform an analysis of the integral equations at small spatial scales and us
result as a preconditioner to reformulate the integral equations to a second kind Fred
form. We then use the iterative method GMRES [35] to solve the system.

To track the evolution of the interfaces, we present new non-stiff time integration al
rithms. These algorithms are designed to accurately capture certain details of the num
solutions such as the chemical potential on the interface. We show that these detalil
sensitively depend on the numerical time integration algorithms. This sensitive depend
was apparently first noticed only recently in [20] in the context of a diffuse interface meth
This is likely because macroscopic properties such as particle shapes are much less se
to the algorithms.

Finally, we implement our method using parallel computation. The main cost of -
algorithm is computing integrals for the diffusion and elasticity integral equations and
normal velocity. If there ar& computational points on an interface, then direct summatic
requiresO(M?) operations to compute each integral at each grid point on the interfa
Although fast summation technigques have been developed for isotropic elasticity [€
which the computational effort is reduced®{M), there is as yet, no fast algorithm for the
anisotropic case due to the form of the integral kernels. To reduce the computational
we exploit the easily parallelizable structure of direct summation as followsP et the
number of processors. Then, we comphM¢P integrals at each processor simultaneous!
and we broadcast the result to all the other processors. This has a perfect workload bale
M/ P is an integer and has a communication load of ofd@vl). For theO (M) operations,
such as updating the interface in time, we perform the computations sequentially. For |
numbers of computational nodes, we regularly achieve efficiencies on the order of 90

Our results show that small elastic inhomogeneities in cubic systems can have a s
effect on precipitate evolution. For example, in systems where the elastic constants c
precipitates are smaller than those of the matrix, the particles move toward each other, v
the rate of approach depends on the degree of inhomogeneity. We find that anisotropic
facial energy can either enhance or reduce this effect, depending on the relative oriente
of the elastic and interfacial anisotropies. However, simulations of the evolution of multi
precipitates indicates that while there are qualitative differences that arise owing to diffe
elastic constants and interfacial anisotropies, the process as a whole is primarily drive
an overall reduction in interfacial energy. Finally, we consider a problem related to
microstructure of fully orthotropic geological materials.

2. FORMULATION

In this section, the field equations for the diffusion and elasticity problems and
formulation of the elasticity problem as a boundary integral equation are presented.
diffusion problem and its reformulation as a boundary integral equation are given in |
and so here we only give a brief review of the relevant equations. The matrix and precip
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phases occupy the two-dimensional pl&fewith the matrix phasM extending to infinity
and the precipitate phas¥ consisting ofp separate particles occupying a finite area. Th
individual interfaces between the two phases are denotégl,lby=1. .. p, with the entire
interface given by = (J”_; . Eachrj is assumed to be a smooth disjoint closed cur
with unit normal vectom taken to point from the precipitate phase to the matrix phas
For the case of precipitate growth, it is convenient to take a circular far bouiidanyith
radiusR,, and inward normat that encloses all the precipitates. This boundary will appe
only in the limit R, — oo through a far-field mass flux condition for the diffusion field.
All variables are dimensionless, with the normalization described in an appendix of [1

2.1. Diffusion

The problem for the diffusion fields is as follows. lodie a non-dimensional composition.
We suppose that the diffusion is quasi-static in the matrix, so

Ac=0 inQM (1)

and we suppose there is no diffusion in the precipitate phase. The boundary condition fc
matrix composition at the precipitate—matrix interface is the generalized Gibbs—Thorr
condition [11, 22, 15, 20]

c= @O +1"O))k+2¢®  onT, 2)

whered is the tangent angle 10, 7 () = 1+ tp(0) is the anisotropic surface energyis the

mean curvature of the interfacg,characterizes the relative contribution of the elastic ar

surface energies, af' is an elastic energy density defined by Eq. (14) below. The surfa

energyz (0) is assumed to be a smooth functiorodfi.e., no cusps) such that+ 7 > 0.
One may also allow a mass flukinto the system through the far-field condition

. 1
—J_ROIJTOOZ/OCVC-nds 3)
Here, J is the total mass flux into the system.Jf> 0 the total area of the precipitates
increases with time (growth), while if = O the total area of the precipitates remains fixe
(coarsening). In this paper, we consider odly 0.

Finally, the normal velocity/ of the precipitate—matrix interface is computed through
flux balance at the interface,

V =Vc-n|r. (4)

Equations (1)—(4) can be formulated in terms of boundary integrals by using a diy
density orl” and source terms for the far-field flux. Giveg®) andg® from the solution to the
elasticity problem, the boundary integral problem for diffusion can be solved numerice
and the normal velocity can be computed by using the Dirichlet—-Neumann map. Detail:
given in [15, 8].

2.2. Elasticity

In order to calculate the elastic energy dengiyused in Eq. (2), we must first compute
the elastic fields on each interfafg. The elastic fields arise because of misfit strain
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between the precipitate and matrix phases as well as far-field applied strains. Misfit is t
into account through the constitutive relations between the siressl the straitg. In the
precipitate,

»P=cPEP -&n), (5)
where€T denotes the misfit strain, while in the matrix,

M =cMeM, (6)

In Egs. (5) and (6)C denotes the fourth-rank stiffness tensor of the material. The str:
componenté‘i)j‘ are computed from the displacement componantsy

& =S (uffy +ufy), @)

NI =

with x = P, M to denote the the precipitate and matrix, respectively.

In this work, we take both phases to have orthotropic symmetry, i.e., two direction:
symmetry. Using compact notation in two dimensions and letting 1 and 2 be the symm
directions, we write, fory = P, M,

Y €11
s =324 | and E£r=|¢& 8)
P £lo

with the stiffness tensor given by

¢i1 ¢ O
Cr=|c ¢ 0. 9
0 0 c&

Alternatively, we may define the compliance tensor

S s 0
S=@CH " =, s 0. (10)
0 0 s%

We remark that if the regiop has cubic anisotropy thesf, = s%,; for isotropic symmetry
Si1= 53, andsge = 2(S]; — S[»).

We now give the classical formulation of the elasticity problem in the two-phase dom:
In the next subsection, we present the reformulation of the system as boundary int
equations.

The field equations for elasticity are

V.24 =0 inQ=MP (11)
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in the absence of body forces. We assume that the two-phase intErfa@®herent, and
so the boundary conditions are given by the continuity of displacement,

Ulp = Ulwm, (12)
and traction,
tlp=2=Pn=3xMn = t|u. (13)
Finally we take far-field conditions
lim EM = £°
r—o0
limu® < oo,
r—0

where&C is an applied far-field strain.
Once the elasticity problem is solvegf' is computed as

1 1
96'=52P;(5P_5T)—§2M:5M+>:M:(SM—SP) onT. (14)

Sinceg® is only needed on the precipitate—matrix interfaces, itis only necessary to com
the elastic fields olr. This can be done by reformulating Egs. (11)—(14) dntbrough a
system of linear boundary integral equations.

2.3. Boundary Integral Formulation for Elasticity

The reformulation of the elasticity problem through boundary integrals stems from
fundamental solution to orthotropic elasticity in two dimensions given by Green and Ta
[7]; see also Rizzo and Shippy [34]. Let anda, be positive constants determined frorm
the elastic compliance tensor by

a1+ a2 = (2512 + Ss6) /S22, (15)
Q102 = S11/90. (16)

LetU (X, x) be the fundamental solution tensor that generates the displacement wgcto
atx’ arising from an isolated force atacting in the positive; direction and with magnitude

B = 2m (01 — a2)Sp2. a7)
Then,
uj (X) = Uij (X', X)& (X), (18)
whereg is the base vector along. This fundamental solutiod is given as

U = aa/?A2logry — a3 *A2logra,  Upp = AjAx(6; — 6y), (19)
Uz = AtAs(6s — 61),  Ugp =y "2 Adlogrs — a; 72 Allogrs, (20)
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where
Aj =sp—ajS forj=1,2 (21)
and
=0 —X)%+ (X — xp)?/arj, 6 = arctan(Xz — Xp)/J/aj (X1 — Xp)).  (22)

Becauser; anda, must be positive, Egs. (15) and (16) may be viewed as restrictions
the elastic constants. For example,Aelbe a measure of the anisotropy given by

A = 2({/s11522 — S12) /S66-

Then, the restriction oy, o> > 0 reduces to requiring < 1. Fortunately, for cubic systems,
this restriction is not as severe as it appearsuhic elasticity s;; = s, and so rotating
the coordinate system by /4 takesA — 1/ A while preserving the cubic structure of the
stiffness and compliance tensors. This restrictwlrephasgroblem with cubic anisotropy
to cases where the elastic constants of both phases have &ith&ror A < 1. This trick,
however, does not work for general orthotropic systems, as rotations create non-orthot
structure in the stiffness and compliance tensors.

It is straightforward to take derivatives &f;; to find the stresses associated with th
displacement;. One may then compute the tractions acting on an arbitrary cottoul
surrounding the point (e.g., see [34]). The traction tensor fidl@x’, x) is found to be

A A A A
Tir = (X — XN —12 - 5 Ti2= Ml—l - M2—22 (23)
A/Ol r2 4/Ol1r1 rl Olzrz
A A A A
T = My 22 Moy, Toa= (X — xk)n/k(—l2 2 ) (24)
r2 4/(X_‘]_rl N4 r2
where(n?, n,) is the outward unit normal th, and
M; = l/2(x1 — XN, — oz_l/z(x2 — X2)Nj. (25)

The use of Green’s fundamental solution to reformulate the elasticity equations as bo
ary integrals was derived previously by Rizzo and Shippy [34]. In the absence of misfit
applied strains, the result is as followset t, be tractions andy displacements acting on
an arbitrary contouk. Then forx insideL,

1
uj(x) = 5 /(tk(X(S/))Ukj (X, X(8") — u(X(s)) Tyj (X, X(8))) ds, (26)
L

where we denote the integration point k§g') with s’ the arclength along.. If we let
X — X(s)yonlL,

2
uj(x(s)) = 5 (f(tk(X(s/))Uk; (X(S), X(8)) — Uk(X(8)) Tij (X(S), X(S’)))d§)> . (27)

where theP indicates a principal value integral. It is straightforward to generalize tt
formula to add misfit and applied strains; both are included in the next subsection.

3 The Einstein summation notation is used: summations are performed over repeated indices.
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2.3.1. Application to two-phase problemsSiven the fundamental solution for ortho-
tropic elasticity, the formulation of the boundary integral equation for the two-phase prob!
proceeds as in the isotropic case considered in [15]. Briefly, Eq. (27) is used in both
precipitate and matrix phases with the appropriate elastic constants and applied and |
strains. Enforcing continuity of displacement and traction results in four coupled integ
equations for each interface. This is seen as follows.

Precipitate. LetdQP =T be the boundary of the precipita®’. Applying Eq. (27) to
the precipitate boundary and using the constitutive relation Eq. (5), we obtain

2
uf (x(s)) + i < 7{ Uy (X(8) T (x(8), x(s)) ds — /F te (X(S)HU (X(S), X(9)) d§>

2
= 4F /tk (X(8)Uyj (X(S), x(5)) d, (28)

wheret} = £fn is the traction and = CJj,,.&1 ;i is the misfit traction.

Matrix. The matrix phase requires a little more work. We introduce an artificial f
field boundaryl",, and we decompose the total fields into their uniform far-field comp

nent (denoted by a superscript 0) plus a remainder (e.g., see [15] for details). Then
in QM,

1
ul' 0 — (X)) = g /r (" (x(s")) — 2 (x(s))) Ul (x(s), %) — (U} (x(s))

1
—URX(S)) T (x(s). %)) ds + B / (8" (x(s) — (x(s))

x Ut (x(), %) — (U (x(s) — up(x(s)) T} (x(s). %)) ds
(29)

whereul =£9x and analogously fotl. We assume that the applied straf is con-
stant.

It can be shown that d3%,, goes toco, the integral overl,, tends to a constant independ-
entofx [2]. This implies that the integral ovér,, contributes a constant to the displacemen
and so can be neglected. Then, lettingpproacH™ from QM, we have

uy' (x(s)) — i ( 7[ u' @A T (), x(s)) ds — / te" (X(s)) Uy (x(s@,x(s))ds)
r r
2
= u(x(s) — Fi <?§ UpX(SN T (x(s). x(s)) dS

- / t2(x())Ug! (X(S). X(S)) dd) . (30)
r

Coherency conditions.Sinceuf =uM andt? =tM on T, Egs. (28) and (30) yield a
system of four linear integral equations for the single-valued displacement and trac
fields onI".
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Existence and uniqueness of solutionalthough this system is not Fredholm since
TP andTM contain a term with a Cauchy singularity, it can be transformed to a seco
kind Fredholm equation using the small scale decomposition given in the next subsec
Classical Fredholm theory [33] can then be used to show that solutions exist and are ut
(u® is specified at infinity, ensuring uniqueness).

2.4. Small Scale Preconditioner for the Elasticity Integral Equations

We can analyze the system (28)—(30) at small spatial scales in an analogous way t
isotropic system presented in [15]. The idea is to determine and separate the dominant
at small spatial scales. Roughly speaking, these dominant terms are those terms assc
with singular integral kernels. For example, integral operators with nonsingular kernels
smoothing at high Fourier wavenumbers (small spatial scales) while those with sing
kernels smooth much less (if at all). Thus, at small scales, operators with singular kel
are dominant. We refer the reader to [15] for a full discussion of this procedure.

Let the boundary displacements= u” =u™ and tractiong =t =t™. Then, Eqgs. (28)
and (30) can be written as

Ku,t)=f (31)
with

Uj + KF (uk, t) fP
K(u,t) = ,  f= : (32)

uj —/CJM(Uk,tk) ij
Ki (U ) = ﬁé (7( w ()T, (2. 2)ds— / t(Z)U (Z, z)ds) : (33)

r r

tP=KP(O]), M =ud— KM (ud,t0). (34)

We now analyze the smoothness of the kernels. We suppose that the interfaces are
separated and do not self-intersect so #igt # z(s') unlesss=¢g'.

We first notice thalt)15(z(s), z(s')), U21(z(S), 2(S)), T11(2(S), z(s)), andT»2(z(S), 2(S))
contain no singularities and remain smoottsas s'. The remaining kerneldy 1, Uy, Tio,
andT,; do become singular &— s'. Their structure is obtained as follows.

Let 0<« <27 parameterizd’, i.e.,s=s(a). Then, observe that

rjz ~ (xi, + Xzza/aj)(a —a')? asa — o, (35)
where thex; are determined from elastic constants via Egs. (15)—(16) and are not rel;
to the parametear. Also, we use the notatiotr to denote that the difference between twi
is a smoothing operator (integral operator with a smooth kernel) [15]. By using Eq. (<
one can show that

A]_ A2 1 a—ao .

To=[— — —= )—cot smooth functio 36

2 («/Oll «/012>25a ( 2 >+ " (30)
o —ao

1
To1 = (Ag/or — AlJoTz)gcot( > ) + smooth function (37)
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Now, define the periodic Hilbert transform by

1 [ 1 L

Hw) = —/ u(a)cot=(a —a’) do'. (38)

27T 0 2

Then, we obtain

Aq A,
Tpds~ [ = — 2 : 39
/F,bL 120S < i 72)777'[(#) (39)
/ uTords~ (VarAz — Jas A H (). (40)

r

This is the small scale decomposition of the integral operators with keFpedndT,;.
It should be observed that the Hilbert transform is not smoothing at small scales.
(k) denote the Fourier transform pfat wavenumbek. Then,

H(w) (k) = —i sgrk)u(k) (41)

and so high frequencies are not “damped” as they would be for a smoothing operator
a smoothing operatd®(.), we haveS(u) (k) = O(e?K Y7, (1)e ") wherep denotes
the strip width of analyticity of the kernels (in the Implane) [15]. This justifies the
decomposition.

The small scale decompositions for the operators with keksigleandU,, are obtained
by performing integration by parts on the terms(igy and arguing similarly. We obtain

/r pUrds~ (a7? A3 — o> A2) s, H(o) (42)
and

/ uUzds ~ (a5 A% — ay 2 A2) s, H(0), (43)
r

whereo () = fg‘u(o/) da’ and we have assumed tfy%QfT,u(oz’) da’ =0. This assumption
is valid because in Egs. (28)—(30), these operators are applied to the tractitich have
zero mean.

Putting everything together, we conclude

K (Ui, ) ~ L7 (U, 1) = D 8ijaH (W) — i By, H (o). (44)

whereoy (o) = [;'tc(’) do’. Further,

L 1=k - {1, l=1k=2
5|k={ 7 . dk3 = § —1, l=2k=1 (45)
0, I #Kk
7 0, I =k

andD{], Eif, with X = P, M, have nonzero components given by

271’( Aq Ay

2
D12 = b «/—0‘—1 - \/—Ol_z)’ D21 = ?n(\/a_zAl — VA, (46)

o 2 _ _
En= (@A - od?A).  Em= F’T(a2 VA - o PAY), (47)
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where we drop the superscrigt but note thaty;, A;, and 8 all depend on the elastic
constants.

Recalling Eg. (32), we now write the small scale decomposition of the full elastic
system as

K, t) =Lu,t)+R, (48)
where
<u; +£f’(uk,tk)>
L(u,t) = (49)
uj — LM (U, t)

dominates the small scales aRds a smoothing operator.

The primary advantage of this formulation is that for a wide range of elastic paramet
L can be easily inverted in Fourier space wigis constant inx (as in the equal arclength
frame discussed in the next section) by using identities like (41). In this frame, compu
L~ reduces to inverting a # 4 matrix at each wavenumbkrfor each interface. See the
Appendix for this matrix.

Using the small scale decomposition, the elasticity integral equations can be reformul
as

L7, ) =1 + L7'R](u, t) = L7, (50)

where£~'R is also a smoothing operator [15]. This is a Fredholm integral equation of
2nd kind.

Computationally, we usé~* as a preconditioner for the elasticity system. This is efficiel
because applying ! on each interface requiré3(M log(M)) operations wher/ is the
total number of grid points on the interface[s)This is to be compared with computing
which requires0(M?) operations.

2.5. Energy

Finally, we assert that the system (1)—(4) and (14) evolves to reduce the sum of su
and elastic energies

Wiot = 9)ds+ Z
tot /FT()S Z

/ SEENAA, (51)
x=M,P X
where
P T —
éxz{g - & for x = P,
EM otherwise

Following [15], the elastic energy can be rewritten in terms of a boundary integral. We
not give the details here. Lastly, a straightforward calculation shows that

\Ntot = EV\/tot = /(T’C + del)v ds
dt r

__ / IVoPdA (52)

which justifies our assertion above.
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3. NUMERICAL METHODS

In this section, we describe the numerical methods used to solve the moving boun
problem. The numerical procedure is the following. (1) The elasticity integral equations
solved to generatg®. (2) The composition integral equations are solved to obgithe
normal velocity of the precipitate/matrix interfaces. (3) The interfaces are updated anc
process is repeated. Because the first two procedures rely on well-established techr
we discuss them very briefly and we focus primarily on the time-stepping algorithms
the interface-update and on parallelization issues.

3.1. Integral Equations

The integral equations for both elasticity and diffusion are solved using the collocat
method together with the iterative solver GMRES [35]. In the elasticity case, the prec
ditioner £ is used in Fourier space. In the diffusion case, the preconditioner develope
Greenbaunet al. [8] is used. The implementation of these two methods together is co
pletely analogous to that in [15] and the normal velogitys calculated in the same way
as in that paper. We refer the reader to that paper for additional background. The inte
(except in the preconditioners) are calculated by alternating point quadratures [40]. Fo
integrals involving log; kernels we first perform integration by parts in order to reduc
the kernels to Arj-type behavior [15]. This yields spectral accuracy. The reason for t
ing the alternating point quadrature is that it avoids evaluating the integrands at the
of removable singularity and we find it gives slightly better numerical performance. A
derivatives or anti-derivatives are obtained using the FFT. Finally, following [15, 12], a 2
order Fourier filter is employed to reduce aliasing errors.

3.2. 6 — A Formulation and Small Scale Decomposition of Evolution Equations

To evolve the precipitate/matrix interfac€s we follow [15, 12] and use thé — A
formulation in the scaled arclength frame. Hefeis the tangent angle to the interface
(measured counterclockwise from the horizontal) @ the area of a precipitate. To
briefly review, letw parametrize the interface. Then,

O(a,t) =tan Y(xpo/X1e) and  A(t) = % / (X1, X2) - nds. (53)
r

We evolve the interfacE in the scaled arclength frame by choosing the tangential veloc
T to be

21 o
T t) = %/ Y do/—/ 0,V do. (54)
0 0

This maintains the relation

Lt
JT
whereL (t) is the length of the interface. This keeps computational points on the cu

equally spaced in arclength at all times.
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The lengthL (t) is found fromé and A(t) by using the relation

LZ(t) 2 ) o ) )
At) = 2/ sm(e(a,t))/ cogf(a’, b)) da
8 0 0

— cogb(a, t)) /a sin(@(a’, t)) do’ |de. (56)
0

The interface coordinate,, xo) are reconstructed from and A by integrating ine the
expressions

L L .
X1q4 = o cog6(a,t)) and Xo o = o sin(@(a, t)), 57)

where the constant of integration is obtained by evolving the centrgjcky) separately.
The evolution is then given by

O(a,t) = ZT”(va +T6,), (58)
Adt) = / Vds (59)
I
_ 1 _ .
X1 = AD [/F X1V ds— xlA] (60)
_ 1 .
Xo = m |:A X2V ds— X2A:| s (61)

whereds= (L(t)/27) da.
In [12], it was shown that at small scales

2 2
v~ (L) HI(t + )0 0] (62)

and thus the evolution Eqg. (58) féiis stiff. That is, for an explicit time stepping algorithm,
the constrainiAt < (hL(t)/27)3, whereAt andh are the temporal and spatial grid sizes
respectively, must be imposed to maintain stability. An advantage of using the scale
clength formulationis thatitis straightforward to develop non-stiff time integration schen
for Eq. (58). For example, in [12, 15], a time stepping method based on an integrating fe
approach was used to remove the stiffness. We note that the remaining equations a
stiff and any explicit time integration scheme can be used to solve them.

3.3. Time Discretizations

Taking advantage of the small scale decomposition (62) and the fact that' =
1+ (t0+ 7g), one can rewrite Eq. (58) as

6

3
(i_ﬂ> H[Ouwae] + N, t), where (63)

21

3
N(a, t) = %(Va +T6,) — <L> H[QOZ(XOI]' (64)
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Except for the anisotropic surface energy contribution, the remainder tdraxe “lower
order” at small spatial scales. Although the anisotropic surface energy #rm +
79)6.04] o IS Of the same order as the terii6 ,,.], we find the splitting in Eq. (63)
to be effective numerically provided + z; is smooth and not too close to 1.

Note that the ternt[6 ,..] is diagonalized by the Fourier transform and so in Fourie
space, we obtain

6; = —m1l'® + N(@), (65)

wherem = (27 k)3 and

t
I (t) = / dt’/L3t). (66)
0

Thus, in Fourier space, implicit time discretizations can be easily applied. However, s
care must be taken with these temporal discretizations so that certain properties o
continuous equations are maintained on the discrete level. For examgguilibrium,
there is an exact balance between the linear and nonlinear terms

m N * | /0 *
(L*)30 = N(6"), (67)
where thex denotes the equilibrium value. In fact, this balance characterizes the equilibr
solution. Since we are interested in equilibrium microstructures, this balance should
hold on the discrete level. It turns out that this requires some care. For example, in the co
of a diffuse interface model, it was observed in [20] that the integrating factor method u
in [12, 15] violates an analogous version of this balance. This also occurs in the boun
integral context. We refer to this method as IF:
Method 1K

Azt [Seim(ln-ﬂiln)l{]n _ eim(|n+17|n—1)Nn71} (68)

5”"’1 7m(|n+1 |n)9 4

which was originally given in [12]. This method is 2nd order accurate in time [12]. It
straightforward to see that the IF method violates Eq. (67) in equilibrium. Using the se
* notation, we find the following discrete balance for the IF method in equilibrium

At

[1 . e—mAt/(L*)3]5* =5 [3e—mAt/(L*)3 . e—2mAt/(L*)3] N[é*]. (69)

Equation (69) is a 2nd order approximation to Eq. (67). In fact,

m 2 (emAt/(L*)3 _ 1)

(L8~ at@—emuvir |7 (70)

6 —N[F"] =

(L*)3

For largem, the dominant error term comes from the tegfa[eMAl/(H - 1]9 Thus, the
error will be small if eitherd is exponentially small (largen) or mAt is small. Recall
thatm = (27 |k|®) wherek is the Fourier wavenumber. If large gradients are preseﬁl in
such as would be associated with formation of “corners” (regions of high curvature]
the precipitate—matrix interfaces, the exponential deca»y(iq‘) may only be achieved for
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rather large values of the wavenumisgiand hencen). For example, suppose exponentia
decay is observed fgk| > k*. Then, the right hand side of Eq. (70) (i.e., the error term)
small only ifm(k*) At « 1. This is araccuracycondition. If this condition is violated, then

the error term can be significant. Typically, the composition on the interface is sensitiv
this error term while the interface position and curvature are not. This will be shown in
next section.

If k* is large, then the accuracy conditiomk*)At « 1 can be very restrictive. As
indicated above, this restriction is due to the fact that the IF method overdamps the nume
solution. By reducing the amount of damping, this accuracy restriction can be remc
completely while the overall order of accuracy is maintained. Of course, reducing
damping narrows the stability region of the numerical scheme. Consider the follow
Crank—Nicholson type scheme:

Method CN

sntl  1— Atm/(L"H3en-1 N 2At
14 Atmy(LM+1)3 14 Atm/(Ln+1)3

N". (71)

Like the IF scheme, the CN scheme is 2nd order accurate in time. However, at the hic
modes, there is little damping of the linear term and only algebraic damping of the nonlir
term. We find that because there is less damping, smaller time steps (than those use
the IF method) are required for stability. This is discussed further in the next section.
straightforward to see that numerical equilibria of the CN scheme satisfy the equilibri
condition (67) exactly.

In a sense, the IF and CN schemes represent extremes in the amount of damping
linear and nonlinear terms for 2nd order methods. One can also derive 2nd order sch
in which the amount of damping varies between these two extremes yet the nume
equilibrium still satisfies the condition (67) exactly. For example, suppose one wishe
have exponential damping on the nonlinear term. Then, one can consider the scheme

an+1

an—1 n m A
6" = Lnnb 4 2Ate Mg (72)

which is analogous to the CN scheme applied to Eq. (65) using an integrating fa
However, the Fourier coefficielty, , is chosen so that Eq. (67) is satisfied exactly for th
numerical solution. It is straightforward to see that

Lm’n = [1 — m(l n+1 | nfl)efm(|"+1,| n_l)/Z]

is the appropriate choice. This leads to the scheme
Method IF2

57 L 1 - (i gm0 o gemd

nl_|

NN (73)

which is 2nd order accurate. Like the CN scheme, there is little damping on the linear t
at the highest wavenumbers. However, like the IF method (and unlike the CN scheme]
nonlinear terms are damped exponentially. As we show in the next section, this schem
a larger stability region than the CN method, although it still requires a smaller time <
for stability than the IF method.
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The method we find to perform the best, in that the time step required for stability
essentially that of the IF method and that the numerical equilibria satisfy Eq. (67) exa
is given as follows. We take exponential damping on the linear term and algebraic dam
for the nonlinear term. One way to do this which maintains 2nd order accuracy is to use
scheme:

Method IF3
_1 Nn

&N
0 A2 T ey (74

an+1 1
= 1+ m(| n+1_ | n—1)em(|“—|”*1)
This is the time-stepping method that we will use primarily in our nonlinear simulation:

3.4. Parallel Implementation

We now discuss the issues involved in implementing our method efficiently in pa
lel. Recall that at each time step, we (1) solve the integral equations for elasticity to
tain g® onI'; (2) solve the integral equations for diffusion to find the compositiori'on
(3) calculate the normal velocity @f; and (4) updaté&. The dominant computational cost
is associated with steps (1)—(3). In particulaifis the total number of grid points dn,
then the operation count for each of steps (1)—(3)i#12) while the operation count for
step (4) isO(M). We note that solving the integral equations for elasticity has the high
computational cost because there a& dnknowns. Consequently, we implement (1)—(3
in parallel and (4) sequentially.

As an example, consider the integral equations for elasticity. Using a collocation met
with an iteration procedure to solve integral equations, a sum that must be performe
each iteration step is

M

D t(x(s)HUHX(S). X(9)) (75)

i=1
forl=1,..., M. Thus, for each, a total ofM summations must be performed with eacl
summation takingdd (M) work. We use the following strategy for the parallel implemente
tion of theM summations. First, we distribute gllas well as all other necessary quantities
e.g., the location of the all interfacess), to every processor. Second, we compMteP
integrals at each processor simultaneously, wRetdenotes the total number of processors
Third, after the iteration procedure we broadcast the tadrom one processor to all other
processors for the next iteration. This strategy has a perfect work-load balavig®ifs
an integer and has a communication load of or@¢M). We apply the same strategy to
all the other summations required to solve the integral equations for elasticity, diffus
and to compute the normal velocity. This strategy has been successfully employed for
problems involving computation of boundary integrals [29].

4. PERFORMANCE AND CONVERGENCE STUDIES

In this section, we consider the impact of preconditioning, time stepping, and parallel
tion on the numerical results, and we verify the accuracy and convergence of the elas
solver.

Unless otherwise stated, all numerical tests in this section are performed using a d
tional misfit straire{; = €J,= 1, ], = 0 with no applied fields and no far field flud & 0).
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The elastic constants are chosen to have cubic symmetry in both the matrix and preci
phase. We use =c)=1.98 cM =118 cM =1, andc}, =cb,=3.03 cf,=1.61, and
cfs = 1.35. These elastic constants (scalectly are appropriate for a Nickel matrix and
Ni3Si precipitates [43, 32]. All precipitates are taken to have the same elastic const:
The surface tension given in Eqg. (2) is chosen to allow four-fold symmetry

() = 1+ 19Cc0S 46 — 6y). (76)

The values ofry and 6y, as well asZ, are chosen for each numerical experiment. TF
precipitates are initially circular with radius of unity. The GMRES error tolerance i 10
and we use 25th order Fourier smoothing with the filter levef'1(12].

4.1. The Effect of Preconditioning

Figure 1 shows the iteration count for solving the elasticity equations using GMRES?
sus time, both with preconditioning and without preconditioning. For this stigdy,0.05
anddy = 0 for the surface energy, and we consider a single precipitate systerd wittD.
The temporal scheme used is method IF with the number of grid pdiat$12 and the time
stepAt =107, The tolerance level for GMRES is 1¥. The precipitate starts from a circle
and evolves toward a square shape, as expected from the four-fold symmetry of the prc
[3]. At the final timet = 0.05, the precipitate reaches its steady state. Without precon
tioning, the iteration count starts at around 45 and decreases to about=®4#15. With
preconditioning, the initial iteration count is 11 (a factor of 4 improvement) and decrea

45

30

Iteration Count

LWM‘J‘A‘)«‘JI‘J‘J‘M

_WU____““

] !
?2.000 2.025 2.950

Time

FIG. 1. lteration count vs time. Dotted line (lower curve), with preconditioners; solid lines (upper curv
without preconditioners.
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to about 4 at the steady state- 0.05. In addition, we observe that changing the number ¢
grid points does not change the iteration count if the precipitate shape is well resolvec

4.2. Performance of Parallel Implementation

We have implemented our parallel computations on four different machines: (1) an Ori
2000 with 195-MHz IP27 Processors; (2) Pentium Il cluster with 300-MHz Processors |
linux 2.0.33) and 100baseT ethernet connection; (3) an IBM-SP2 with 120-MHz P2
Processors; and (4) a Cray-T3E with 300-MHz DEC alpha Processors. In all cases, w
the Message Passing Interface (MPI) for the communication among processors.

We consider both a three precipitate and a six precipitate calculation. For the Pentiu
cluster we also consider a 10 precipitate calculation. In all cases, whltakeh6, Z = 2 for
each precipitate and we update in time using Method IF witk= 10~%. For the three and
six precipitate simulations, some of the precipitates have isotropic surface engsg9)(
and the others have anisotropic surface eneggy 0.05 andfy = 0. In the ten precipitate
simulation, all precipitates have isotropic surface energy. Because of limited comp
resources, we only sample the computational time for the first 20 time steps. We com
the cases on the four different machines and with different number of processors.
speed-up and efficiency are defined in the standard way,

T T
speed-up= T—l efficiency= # (77)
P P

whereTp is the computational time using processors. In Table |, we present the perfor
mance results for the Origin-2000 for (a) three precipitates and (b) six precipitates usin
to 8 processors. Tables Il, IV, and V give the same information for the Pentium Il clus
the IBM-SP, and the Cray-T3E, respectively. We used up to 32 processors for the lattel
machines. In Table Ill, we show the computational time, speed-up, and efficiency for
ten particle simulation on the Pentium Il cluster.

Consider first case (a). We see excellent speed-up and efficiency for all four mach
using two or four processors. In fact, we see super linear speed-up for the Cray-T3E
two processors. However, with more processors the efficiency decreases and there is ¢
no improvement in the speed-up from 16 processors to 32 processors. This is because
are not enough operations in computing the summations to compensate for the expel
communicating among the large number of processors. For case (b) where there are
computational points, we see excellent speed-up and efficiency using up to eight proce:
Further, at every processor level, both efficiency and speed-up are significantly impre

TABLE |
Origin-2000

Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency

1 339 1343

2 181 1.87 94% 681 1.97 99%
4 102 3.32 83% 365 3.68 92%
8 63 4.46 56% 213 6.30 79%

Note.(a) Three precipitates; (b) 6 precipitatés= 256 and 20 time-steps.
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TABLE Il
Pentium 2 Cluster: 100 BaseT Ethernet Connection
Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency
1 374 1492
2 202 1.85 92% 772 1.93 96%
4 124 3.02 75% 421 3.59 88%
8 77 4.85 47% 255 5.85 73%
16 60 6.23 39% 202 7.39 46%
Note.(a) Three precipitates; (b) 6 precipitatés= 256 and 20 time-steps.
TABLE 11l
Pentium 2 Cluster: 100 BaseT Ethernet Connection
Pro Time (s) Speed-up Efficiency
1 21017
2 10738 1.95 98%
4 5666 3.70 93%
8 3071 6.84 86%
16 1573 13.36 84%
Note.Ten precipitatesN = 256 and 20 time-steps.
TABLE IV
IBM-SP
Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency
1 477 1952
2 254 1.88 94% 1006 1.94 97%
4 149 3.20 80% 537 3.64 91%
8 92 5.18 65% 309 6.32 79%
16 67 7.11 44% 195 10.0 63%
32 63 7.57 24% 154 12.7 40%
Note.(a) Three precipitates; (b) 6 precipitatéé= 256 and 20 time-steps.
TABLE V
Cray-T3E
Pro (a) Time (s) Speed-up Efficiency (b) Time (s) Speed-up Efficiency
1 224 897
2 109 2.05 1.03% 445 2.02 101%
4 57 3.93 98% 227 3.95 99%
8 31 7.23 90% 118 7.60 95%
16 18 124 78% 64 14.0 88%
32 18 12.4 39% 46 195 61%

Note.(a) Three precipitates; (b) 6 precipitatés= 256 and 20 time-steps.
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over those obtained in case (a). For example, on both the IBM-SP and the the Cray-
the efficiency using 32 processors improves about 60% from case (a) to case (b). I
consider the simulation of ten particles on the Pentium Il cluster (Table I11). Here, excell
speed-up and efficiencies are obtained using up to 16 processors (the most we wer:
to use). This demonstrates the scalability of our parallel implementation and also sug
that to achieve 80% efficiency one should use approximately 200 points/processor.
Finally, we notice that among the four machines, the Origin-2000, Pentium Il cluster, :
IBM-SP have similar efficiency with the Origin-2000 being slightly faster. As expected, t
Cray-T3E shows by far the best performance and computational speed of all the machin
is interesting that the Pentium Il cluster, which is by far the most inexpensive machine, g
timings and efficiencies comparable to the much more costly Origin-2000 and IBM-SF

4.3. Studies of Different Temporal Schemes

Four different time-stepping schemes are implemented, three of which ensure tha
merical equilibrium and physical equilibrium agree (Methods CN, IF2, and IF3), and ¢
which does not (Method IF). We now elaborate on this result and discuss the perform.
of the different methods.

We consider first how the difference between the numerical and physical equilibria i
ifests itself. Figure 2 shows the profiles of a single precipitate=a.2 with no elasticity,

Z =0, but with anisotropic surface tensiap= 0.05 andfy = /4. The initial condition

is a unit circle. Also,N =512 andAt =10"*. This figure was generated using Methoc
CN, but graphs generated using the other schemes are similar. Note that because
anisotropic surface energy, the precipitate develops high curvature regions as it appro:

FIG. 2. The profile of one precipitate &t=0.2.
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FIG. 3. dWot/dt vs time.+, Method IF;O, Method IF2;%, Method CN;x, Method IF3. Thex and x
overlap.

the steady-state. By the final time showe; 0.2, the precipitate is very close to its stead\
state.

Figure 3 shows time derivatives of the total energy plotted against time for computati
using Method CN, Method IF, Method IF2, and Method IF3 with the same parameter:
above. Clearly, the time derivative of the total eneWjy, for the physical system should
approach zero as the system approaches the true steady-state. This is indeed the c
Method CN and Method IF3 (whose grapksand x overlap), but not for Method IF
(4 graph). For Method IR\, approaches a nonzero constamt-0.737), indicating that
the solution is “trapped” in a numerical steady state. For Method IF2, it appeat&ithit
very slowly approaching zero indicating that it may take a very long time before Mett
IF2 reaches the true equilibrium (as it must).

This behavior is further demonstrated by plotting the composition the precipitate—
matrix interface versus the scaled arclength parametsrt =0, 0.01, 0.02,..., 0.2 for
the four different temporal methods (Fig. 4). In the steady stathould be constant.
Indeed, this is the case for the computations using Method CN and Method iE30a2.
However, for the computations using Method IF and Method tfAcillates in the regions
corresponding to the corners of the precipitate. For Method IF2, the amplitude of tt
oscillations appears to be decreasing very slowly in time indicating a trend towards
true steady state. By comparing the curvatures of the different shapes shown in Fi
one finds that Methods IF and IF2 damp out the high curvature at the corners much 1
than Methods CN and IF3. This is similar to behavior observed in the diffuse interf:
calculation of [20], where problems arose due to the high frequencies associated witl
diffuse transition layer.
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(a)

(b)

(e)
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o

FIG.4. catt=0,0.01,0.02...,0.2. (a) Method IF; (b) Method IF2; (c) Method CN and Method IF3. They
overlap.

Essentially, the time stepping used in Methods IF and IF2 acts to filter the numer
solution and in effect prevents the particle from reaching its true equilibrium shape, althc
we expect that the simulation using Method IF2 will eventually reach the true steady-s
at very long times. A2t decreases, Methods IF and IF2 become more accurate albeit 1t
costly. Also, while curves such as Figs. 3 and 4 are striking, the actual differences in
shapes generated by the different methods are negligible.

The problem of damping the high frequencies occurs whenever a particle shape dev
corners. Hence it will occur when we include anisotropic elasticity with isotropic surfa
energy, because the anisotropic elasticity leads to square shapes quite similar to the
surface energy. Table VI shows results 0= 8 and isotropic surface energyy& 0)
computed by using the four temporal schemes uding 256 andAt = 2.5 x 10~°. Based
on the anisotropic surface energy results, the error in the curvature is measured relative
results computed by using Method CN Table VI shows that the error in curvature is redt
by a factor of 10 by using Method IF2 over Method IF, and by another factor of 10 by us
Method IF3. Also, we see that the time derivative of the total energy, which should be z
in equlibrium, decreases from 1busing Method IF to 10° using either Method CN or
IF3, which is close to the error tolerance of fQised for solving the elasticity equations.

While Method CN and Method IF3 are good at capturing the true equilibrium of t
system, they are also more expensive in terms of computational cost compared to the
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FIG. 5. Curvature vax att=0.2. Solid curves in all graphs, Method CN; (a) dotted curves, Method IF
(b) dotted curves, Method IF2; (c) dotted curves, Method IF3.

methods. If we use the iteration count per time step as an index of cost, then Metha
and Method IF2 are roughly equivalent, Method IF3 is twice as expensive as Method
and Method CN is twice as expensive as Method IF3. In general, we believe that Me
IF3 demonstrates the best combination of accuracy, efficiency, and stability. This is r
evident for calculations with largé. For example, wittZ = 10, we are able to use Method
IF3 with N = 256 andAt = 10~° to compute the solution such that the the time derivati
of the energy is about 18 (near steady state). However, for the safhand At, Method
CN diverges because of the accumulation and amplification of the high frequencies ir
solutions (primarily due to elastic fields generated by the high curvature regions).

TABLE VI
Comparison of Methods for Cases withZz =8

Method IF Method IF2 Method IF3 Method CN

dW/dt at equilibriumt =0.1 -101 -10°3 -10°° -10°°
Maximal curvature difference relative
to the one by Method CN 10 102 103

Average iteration count
per time step 1.6 1.7 2.9 5.3
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In summary, Method IF3 has the best balance of accuracy and efficiency of the
methods we have tested. Of the other methods, Method IF and Method IF2 are efficien
need extremely small time-steps to accurately capture high curvature regions. Methoc
can accurately capture the high curvature regions with a moderate time-step, but it ne
very small time-step for numerical stability in solving the integral equations for elastici

4.4. Convergence Tests

Analytic solutions for the displacement and traction of a single precipitate in inhomo
neous orthotropic elastic media can be obtained by using conformal mapping technic
see, for example, [4]. We have verified the static numerical solutions from our bounc
integral formulation of the elasticity problem against the analytic solutions in [4]. We he
also compared our time-dependent and multi-precipitate computations for the case of h
geneous, cubic elastic media against the solutions found using the elastic solver introc
by Voorheeset al. [43, 41, 42]. The different solution techniques agree up to numeric
resolution.

We confirm the numerical accuracy of our results by considering the following pre
lem. We take a single precipitate that is initially a circle of radius unity. The precipite
has dilational misfite]; =€J,=1, ¢],=0, there are no applied fields, and the far-fielc
flux J =0. The elastic constants are chosen to be cubic in both the matrix and pre
tate, withc}) =chh =203, ¢} =1.21, ¢}k =1, ¢}, =c§,=3.03 ¢, = 1.61, andcf; = 1.35.
Also, Z =5, 1o =0.05, andvy = 0. Time updating is done using Method IF3 and the errc
tolerance for GMRES is set to 1.

Consider first the resolution in space. We use a computationMWih1024 to approx-
imate the exact solution. We compare this solution at time).1 to those withN =64,
128, 256, and 512. Note that the precipitate has essentially reached its steady stat
all the computations, we chooge =2 x 10-2. The error is defined to be the largest dif-
ference between points on the precipitate—matrix interface. Figure 6 shows the bas
logarithm of the error plotted against the base 2 logarithiN oFor N = 256, there are 9
digits of accuracy which is close to the GMRES tolerance!20Consequently, increas-
ing N to N =512 does not improve the accuracy. Figure 7 shows similar results for

Log,, (error)
[}
o
|
!

5 6 7 8 9 1
Log, (N)

FIG. 6. Resolution study for spatial discretization with the error in the interface location as a function of
N =64, 128, 256, 512.
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FIG. 7. Resolution study for spatial discretization with the error in the solution of the elasticity equation ¢
function of N, N =64, 128, 256, 5120, displacement, traction.

displacements and tractions on the interface=a0.1. Here the error is taken to be tHe
norm of the difference in the appropriate quantity computed\fagrid points compared to
that with N = 1024 grid points. We notice that the accuracy for the displacement is ab
the same as the accuracy of the interface location, while the accuracy for the tractic
about one digit worse.

SinceN =256 is accurate to 9 digits, we use it for the temporal resolution study. \
choose the solution witht = 2 x 10~* to approximate the exact solutions. We compare th
to the solution withAt = 2.5 x 1073, 1.25x 1073, and 625 x 10~. The error is measured
in terms of the interface positions as in Fig. 6. Figure 8 shows the base 10 logarithm o
temporal error plotted against time. The distance between the curves in Fig. 8 unifol
decreases by about a factor of 0.6 with each halvingtofhereby confirming the second-
order accuracy.

It is instructive to consider the temporal resolution for all four time discretization alg
rithms given in Subsection 3.3. Figure 9 shows the temporal error for all four methc
For Method IF, Method IF2, and Method IF3 the error is measured between the comp

-2

Log,, (error)
|
~
|
I

At=0.0025
At=0.00125
_5 — —
S—o At=0.000625
-6 1 |
@.00 o.05 .10 .15
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FIG. 8. Resolution study for temporal scheme Method IF3.
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FIG. 9. Error in the interface location vs time for four different methods. Method CN, error betwe
At =2 x 10* and At = 10~* while the other three are error betweth=6.25 x 104 andAt =2 x 107%.

solutions withAt = 6.25 x 10~% andAt = 2 x 104, while for Method CN the error is mea-
sured between the computed solutions with= 2 x 10~* andAt = 10~%. (The reason for
choosing a different error measure for Method CN is that it divergesautite 6.25 x 1074.)
Note in Fig. 9 that the three methods (IF3, IF2, and CN), which converge to the true ste
state, show improved accuracy as the system approaches steady state. In contrast, th
using Method IF saturates in time since since the numerical equilibria depends on the
stepAt. We remark finally that when the different time steps are taken into account, «
can show that Method CN and Method IF3 have roughly the same level of accuracy.

5. RESULTS

We now consider how elastic inhomogeneities and anisotropies as well as surface el
anisotropies affect microstructural developmentin alloys. We begin by considering Ni-be
cubic systems with a Ni matrix phase and eitheyMiiNi3Ga, or N;Si precipitate phases.
Later, we present a calculation using orthotropic elasticity, adapted from observation
melt pockets in mantle rocks.

5.1. Cubic Elasticity

We begin with calculations of inhomogeneous cubic elasticity. The elastic consta
normalized by Gg of the matrix Ni phase, are shown in Table VIl [32]. For all phase:
the anisotropy ratid\ > 1, indicating that the horizontal (i.610)) and vertical (i.e.{01))
directions are less stiff than the diagonal (i..1) and (—11)) directions (see [43] for
details). Note also that the pl and NizGa have elastic constants less than those of the
matrix. Following the notation we used in the isotropic elasticity case [15], we refer to th
precipitates as soft. In contrast, the;Sli precipitates have larger elastic constants than tl
matrix; we refer to these as hard.

We take an anisotropic surface energy as given by Eq. (2), i.e.,

7(0) = 1+ 10COS 40 — 6p), (78)

where eithey =0 or 6y = /4. Whendy =0, the surface energy has minima along thi
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TABLE VII
Elasticity Constants

Cu1 Ci2 Co2 Cos
Nickel 2.03 1.21 2.03 1.0
Ni3Al 1.83 1.21 1.83 1.02
Ni;Ga 1.54 .996 1.54 0.87
Ni;Si 3.04 1.62 3.04 1.35
Olivine 4.1 0.84 2.5 1.0

Soft precipitate 1.14 0.22 1.14 0.417

diagonal directions and so the minimum surface energy (Wulff plot) shape will be squa
with sides (facets) oriented perpendicular to the diagonals. See the graphs in Fig. 10 lak
“competing.” The reason for this notation will be discussed below. Whear /4, the
surface energy has minima along the horizontal and vertical directions and so the V
plot shape will be squarish with facets oriented normal to those directions. See the gr
in Fig. 10 labeled “enhanced.”

5.1.1. One particle. Considerfirstthe effect of elasticinhomogeneity on the equilibriul
shape of a single particle with isotropic surface enetgy«0). Equilibrium shapes—shapes

Plot of (t+1") versus tan angle (Competing) Plot of Polar Angle (Competing)
2 1.5
1
1.5
0.5
1 0
-0.5
0.5
-1
0 . -1.5
1] 2 4 6 -1 0 1
tan angle
Plot of (t+1") versus tan angle (Enhanced) Plot of Polar Angle (Enhanced)
2 1.5
1
1.5
0.5
1 0
-0.5
0.5}
-1
0 -1.5
0 2 4 6 -1 0 1
tan angle

FIG. 10. Anisotropic surface tension. Upper plots, competing; lower plots, enhanced. For each set,
(r 4+ t”) vs tangent angl®; right, polar angle(r cog6), T sin®)). T =1+ 1o cos 46 — 6,). In the competing
case;ro =0.05 andd, = 0. In the enhanced casg.= 0.02 andd = /4.
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for which the chemical potential and composition is uniform along the interface—have b
calculated previously by Thompsemal. for the case of homogeneous elasticity [43], an
by Schmidt and Gross [38] for the inhomogeneous case. These workers determine
equilibrium shapes by determining the composition on the interface for a given part
shape, and iterating until the shape giving uniform interfacial composition is found.
contrast, we find the equilibrium shape by evolving an elliptical initial shape until it react
equilibrium.

Figure 11 shows a series of equilibrium shapes that evolve from the same initial sh
In all these figuresZ =5. For the homogeneous system (elastic constants of Ni for b
phases), the equilibrium shape is squarish, in agreement with the calculations of Thom

Homogeneous Ni-Si
2 T T : : . 2 T T T T T
15 15
1 1t
05 05
[) o
05 05
-1 -
8 15
EEETEEEES o 05 1 15 2 -2 .
-2 -1.8 -1 -0.5 o 0.5 1 15 2
Ni-Al Ni-Ga
2 T T T T 2 : T T
15k . 1 15}
1 1
05 05
of )
o5} o5}
-1 4 -}
-15 -1.5
R [ 0.5 1 15 2 - T a— [ 05 1 15 2

FIG. 11. Equilibrium precipitate shape&, =5, 1, =0. For homogeneous simulatiom,= 3.5, N =256,
At =5 x 10~*. For NizSi simulationT = 1.3, N = 256,At =1 x 10~*. For Ni;Al simulation,T =0.90,N =512,
At=1x 10*. For Ni;Ga simulation,T =1.22, N =512, At =1 x 10~*. In all, the tolerances for the diffusion
and the elasticity solvers are 10
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Ni3Ga Equilibrium Shapes
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FIG. 12. Equilibrium precipitate shapes for §a with competing anisotropic surface tension. Dotted curve
7= 0 (from Fig. 10). In all other curves, = 0.05 andd, = 0 (competing surface tension). Solid curZes=5.0;
dashed curveZ = 2.5; dot-dashed curve, = 0. For curves withy =0.05,Z =0,andZ =2.5,T =0.1,N = 256,

At =1 x 1074, andtol = 107° for both diffusion and elasticity. For curve with="5.0, N =512,At = 2.5 x 10°°
with tol as above.

et al. [43].# They predict a bifurcation from a squarish shape to a rectangular shap
a valueZ =5.6. Based on calculations using isotropic elasticity, see, e.g., [15, 14]
well as the results of Schmidt and Gross [38], one expects this bifurcation point tc
higher for hard precipitates and lower for soft precipitates. This agrees with our res
The equilibrium NiSi precipitate is squarish faf =5, while the equilibrium NjAI and
Niz;Ga precipitates both have rectangular shapes, with the “softe@dprecipitate having
the larger aspect ratio. While these trends are expected, it is surprising to note the ¢
of the small inhomogeneity of the Ni—pAl system (see Table VII) on the equilibrium
shape. Indeed, one of our qualitative observations throughout this study is that small el
inhomogeneities in anisotropic systems affect microstructure much more profoundly 1
similar inhomogeneities in isotropic systems.

We now consider how anisotropic surface energy interacts with elasticity in producing
equilibrium shape. We first takg = 0.05 andzy = 0. In this case, the Wulff shap& & 0)
has facets oriented at 4&® the facets of the elastic equilibrium shapesin Fig. 11. Therefo
the surface energy anisotropy “competes” with the elastic anisotropy.

In Fig. 12, equilibrium shapes of a }a precipitate (soft) are shown for different value:
of Z. Thetp =0 shape (from Fig. 11) is also superposed on Fig. 12 for comparison. C

4The elastic constants used by Thompsoal. for Ni differ slightly from those we are using.
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NiSSi Equilibrium Shapes
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FIG. 13. Equilibrium precipitate shapes for §8i. Dotted curver, = 0 (from Fig. 10). Solid curveg, = 0.05,
6p=0,Z=5,T =0.10,N =256, andAt = 1 x 10~*. In all simulationstol = 10 for both diffusion and elasticity.

observes that the anisotropic surface energy causes th& precipitate to become more
ellipsoidal compared to the corresponding precipitate with isotropic surface tension.
aspect ratios of these two shapes are quite similar indicating that fapthie value ofZ,

at which the bifurcation from a squarish to rectangular shape occurs, seems to be unaff
by the anisotropic surface energy. Wh&n=0, one recovers the Wulff shape seen ir
Fig. 10. As Z increases, the facets change orientation such tha £y5, we observe
horizontal facets consistent with the elastic equilibrium shapes shown in Fig. 11 altho
the vertical facets seem to disappear.

In Fig. 13, equilibrium shapes of a §8i precipitate (hard) are shown f@ =5 both
with and without anisotropic surface energy. We observe little difference in the ove
shapes, although as expected, the competing anisotropic surface energy acts to smo
corners.

We next consider a surface energy anisotropy gtk 7 /4. Here, the facets in both the
Wulff and elastic equilibrium shapes are aligned horizontally and vertically. Therefore, 1
surface energy “enhances” the elastic anisotropy. In this case, we had difficulty compt
with 7o = 0.05 and so we used the smaller vatige= 0.02. The results are shown in Fig. 14
for an NiSi precipitate. Analogous results are obtained foy@d and are not shown. In
Fig. 14,Z =5 and precipitates with and without anisotropic surface energy are shown.
observe that the anisotropic surface energy has little effect on the overall shapes alth
the anisotropic case has slightly sharper corners.
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Enhanced, NISI

0.8

06F 4 enhanced \ ]

0.2

- ! ) ! 1 1 1 1 1 1

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

FIG. 14. Equilibrium precipitate shape for p8i with enhanced anisotropic surface tension. Dotted curve
7o =0 (from Fig. 10). Solid curver, = 0.02,6p = /4, Z =5, T = 1.0, N = 256, andAt = 1 x 107*. In all simu-
lations,tol = 10°¢ for both diffusion and elasticity.

5.1.2. Two particles. We now consider the evolution of two particles with isotropi
surface energy. The primary focus of our simulations is to test how inhomogeneity aff
the observationfa a stable interparticle spacing in elastically homogeneous systems [.
The presence of this stable spacing has been explained by Su and Voorhees [42], whe
the idea of configurational forces [10] to account for the interaction between particles. H
ever, the calculation of configurational forces breaks down when the elastic constants c
precipitate and matrix phases differ. In addition, based on the results for inhomogene
isotropic elasticity [15, 38], we expect inhomogeneity to have a strong influence on in
particle forces.

Figure 15 shows the evolution of two patrticles for the different systems we consider.
initial configuration in all cases consists of two unit circles separated by a distance of 11
Also, Z =5 for all cases. For the homogeneous case and the case wihp¥irticles, the
final times correspond to when particle evolution essentially ceased. For the cases
NizAl and NisGa particles, the final times correspond to when the interparticle spacing:
too small to resolve the interfaces for the numerical parameters used.

We observe that the spacing between the hagbiNjarticles is larger than the spacing
between the homogeneous particles, while the spacing between the gdfaNi Ni;Ga
particles is smaller than the spacing between the homogeneous particles. This is cc
tent with simulations in isotropic media, which indicate that hard particles repel, wt
soft particles attract. However, the situation is more complex with anisotropic elastic
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FIG. 15. Two precipitate simulations: shapes. Isotropic surface tensien0, Z =5.0. For homogeneous
simulation, N =256 on each precipitate\t = 1 x 10~*. For Ni;Ga simulation,N =512 on each precipitate,
At =5 x 107°. For Ni;Si simulation,N = 256 on each precipitaté\t =1 x 10~*. For Ni;Al simulation,N =512
and At =5 x 1075 initially, for t > 0.36, N = 1024, and =2.5 x 107°. In all simulations,tol = 107° for both
diffusion and elasticity.

Figure 16 shows the velocity of the point of closest approach versus the half-distance
tween the particles. The initial condition corresponds to a half-distance of 0.5. In all ca
the particles initially repel (velocity 0) as the particles square off. At later times, the
particles move towards each other (velogit®) though the details depend on the elas
tic inhomogeneity. In the homogeneous and theSNicase, the particles move towards
each other with very small velocities which seemingly tend to zero at a finite interpart
distance.

The behavior observed in the il and NizGa systems is more interesting. In thes
cases, the interparticle attraction at later times is much stronger and may lead to pa
merging. In the NjGa case, the interparticle velocity becomes increasingly negative
the interparticle spacing decreases. This suggests the particles will merge. In;&he N
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FIG. 16. Two precipitate simulations: velocity. Velocity of Pt of closest approach vs min half-distance
approaching precipitates in previous Fig. 15. FogS\i velocity of centroid of right particle vg-component of
centroid of right particle.

case (which is nearly homogeneous), however, there is a turning point in the velocit
small separations although the velocity remains negative. More refined calculations
necessary to determine whether there is in fact a small nonzero interparticle spacing ir
case. The difference between thes®a and NiAl cases is also reflected in the particle
shapes in the interparticle region (Fig. 15); in thg®& case, the particles appear to curve
towards each other while in the Mil case the two particles have “squared off” agains
each other.

To conclude this section, and to indicate how sensitive the above results are to che
in the physics of the problem, we consider one example with anistropic surface ene
We take two NjAl precipitates with “competing” anisotropic surface energigs- 0.05
anddp = 0. All other choices are as above. Figure 17 shows the precipitaies-@127.
Observe that unlike the isotropic surface energy case wighlNirecipitates shown in
Fig. 15, the particles are curved towards each other in the interaction region, consi
with the Wulff shape of each particle. Moreover, as seen in the inset, there is a nr
larger interparticle attraction in this case compared to the isotropic surface energy cas
velocity becomes more negative as the interparticle spacing decreases. Thus, we expe
in this situation, the particles will merge. Considering the same example with “enhanci
anisotropic surface energy witg= 0.02 anddy = /4, we find less particle attraction than
in either the isotropic or competing surface tension cases. This is seen in Fig. 18. De
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FIG.17. Two precipitate simulation NAl, shape afl = 0.27 with velocity vs half-distance inset. Anisotropic
surface tensiom, = 0.05 andd, = 0 (competing)N =512 on each precipitaté\t = 1 x 107, andtol = 1076 for
both diffusion and elasticity.

the lowering of attractive forces in this case, it is still unclear whether particle merger \
be avoided.

5.1.3. Multiple particles. We next consider the coarsening of systems with multipl
precipitates. We investigate two cases of precipitates embedded in a Ni matrix: (a
NizAl (soft) precipitates and (b) 10 dsi (hard) precipitates. In both cases, we take 1,

At =5x 104, N =256 for each precipitate, the diffusion tolerance 0 the elasticity
tolerance 10°, and the initial precipitates are all circular. We choose the elastic tolerar
to be 10°° in order to reduce the computational cost of our simulations.

Because our boundary integral formulation breaks down when topological transiti
such as particle vanishing occurs, we remove precipitates by hand when their area dec
below 0.1. In a prior work [15], the effects of this procedure were carefully investigatec
the context of isotropic, inhomogeneous elasticity. It was found that the eldsgand
the envelopeof the time derivative of the energi; are continuous through precipitate
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FIG. 18. Two precipitate simulation NAI, velocity vs half-distance. Solid curve, =0.02 and6, = /4
(enhanced)N =512 andAt =1 x 10~* up tot =0.40, N = 1024, andAt5 x 10° for 0.40<t <0.42 ¢ =0.42
is final time shown)tol = 10-¢ for both diffusion and elasticity. Dashed cureg= 0.0 from Fig. 16. Dot-dashed
curve,to = 0.05,6, =0 from Fig. 17.

vanishing W, itself, however, diverges negatively as precipitates vanish. Moreover, as
precipitates vanish, they become more circular due to the dominance of the surface el
over the elastic energy. Although we do not present them, we find these results still
true for the simulations of NAI and NisSi precipitates presented below.

The evolution of systems (a) and (b) in time is shown in Fig. 19. The solid cun
correspond to NiAl precipitates and the dashed curves correspond to t}f& Niecipitates.
Note that only the NJSi precipitates are shown at tinhe=20.09 for reasons explained
below. From a macroscopic point of view, there seems to be little difference in the res
of the two simulations over the times considered. The precipitates become squari
very early times and there is only a small amount of particle translation. One can obs
that the upper and lower two relatively large pairs of precipitates tend to align along
horizontal direction locally. The global alignment of all precipitates on the horizontal a
vertical directions appears to occur on a longer time scale. On the time scale presente
kinetics appears to be primarily driven by the surface energy which favors coarsening-
growth of large precipitates at the expense of the small precipitates to reduce the su
energy.

Upon closer examination, differences between the simulations are observed. For exa
consider the result at timte= 15.77 which is shown in Fig. 20. In the Bl case, the two



80 LEO, LOWENGRUB, AND NIE

O =]
{ 00 | 1 ©O°

1 O] - S

4 0 4 0
4 0P . 00

-0 = a0 e Py - 0 —40 a0 20 10 0 10

Timess.0 Tirnes=10.0
@l T T T T T ] aof T T 4 T
; D O - ) O Q
0 of

O | - 5

_ao} O { -20b O

4 0P | 1 0O

- —40 —30 20 -10 0 10 T -40 -30 -20 -10 [ 10
Times15.0 Time=20.08
20 20
an e L2 P et 3 f -
I ]
= | RS
\_‘_ ’/
0 0
-
' \'
=10 10 I
\ ]
T ety 4

20t O 1 -20t -
-
= T i
[ 1 | i
-a0f 1 -30t | | !
\ ’ R

-40 =30 =20 =10 o 10 —40 -30 20 -10 0 10

FIG. 19. Evolution of 10 precipitates in a Ni matrix. Solid, il; dashed, NiSi, Z=1, At =5x 1074,
N = 256 for each precipitatégl = 10-1° for diffusion, and 10° for elasticity. Note that only the N&i precipitates
are shown at timé= 20.09; see text for details.
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FIG.20. The sixremaining precipitatestat 15.77 from the evolution shown in Fig. 19. Solid,J4il; dashed,
Ni3Si.

upper precipitates attract one another and likely merge. In tf®i base, on the other hand,
it does not appear that these two precipitates will merge. This is consistent with the re
of our two precipitate simulations. In addition, the interacting pairs @ANprecipitates
tend to be “flatter” than their NBi counterparts.

We further observe that the lower two precipitates in theANcase also attract one
another. In the process, the lower right precipitate develops very high curvature (not
flat bottom) which ultimately prevents us from continuing the simulation much beyo
this time. This is why no NJAI precipitates are shown at tinte=20.09. By increasing
the numerical resolution of the Ml simulation (i.e., usingN =512 andN =1024), we
are able to continue the simulation slightly further in time. However, much higher lo
resolutions are needed in order to determine whether the curvature actually develc
singularity at a finite time. In a future work [21], we will use adaptive discretizations to 1
to answer this question.

5.2. Orthotropic Elasticity

As afinal case, we now consider examples where the elasticity displays fully orthotr
behavior in two dimensions. That is, we have four independent elastic conStan; »,
Cs2, andCgg, rather than the thre€f;, C1,, Co = C;13 andCgg) needed in cubic elasticity.
The example we present relates to an observation of microstructure in geology.

In a set of experiments performed by David Kohlstedt and Mark Zimmerman in 1
Department of Geology at the University of Minnesota, the mineral olivine, which has
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% Area

FIG.21. Top (a), reflected light optical micrographs of the olivine matrix with imbedded melt pockets (da
for the experiment described in the text. The faint outlines of the grains (surrounded by the melt pockets) cal
be observed. The coordinate axes correspond to the crystallographic axes. Bottom (b), polar plot indicatir
percentage of melt area in each orientation. Plots courtesy of Kohlstedt and Zimmerman.

orthorhombic crystal structure, was loaded in shear. Melt pockets selectively accumt
with preferred orientations, as indicated in Fig. 21. This preferred orientation becomesr
pronounced with increasing shear. The orientation of melt pockets has profound implicat
for anisotropy in permeability, seismic attenuation, and seismic anisotropy beneath 1
ocean ridges. See [16] for a more detailed explanation of the experiments and descri
of the results.

Our goal is to use our methods to try to understand the relationship between the
pocket orientations and the anisotropy of the olivine. We consider the melt pockets to be
elliptical particles embedded in an orthotropic material with elastic constants appropr
to olivine. The elastic constants used in the simulations are given in Table VII. For
soft precipitate, the ratio of the shear moduygli, (c;1 — €12)/2 to bulk modulus;; + ¢;2 is
approximately equal to 3. Since real fluids typically have very large such ratios, we chec
that increasing the bulk/shear ratio did not significantly alter our results. The simulati
we present include applied biaxial compression and shear but no misfit between the pa
and matrix phases.

We first consider two interacting particles evolving by diffusion. Figure 22 shows t
results of this simulation. The particles translate and elongate to align approximately ir
direction of the shear. In addition, they attract one another. This result is consistent
our previous experience [15]. However, this result is not consistent with the experimen
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Orthotropic Elasticity Simulation
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FIG. 22. Two precipitate simulation: Olivine matrix with soft, nearly isotropic precipitates. Isotropic surfa
tension ¢, = 0). Dashed circles, initial conditioff (= 0). Solid curves, precipitates @t=5.20. Solid curves with
boundariest- andO indicate trajectories of centroidll. = 256 on each precipitatat = 1 x 104, andtol = 106
for both diffusion and elasticity.

Kohlstedt and Zimmerman. This is not surprising, as there is no reason to expect the
evolution of the melt pockets is driven by diffusion.

As anext step, we separate the elasticity solver from the diffusional evolution and cons
how the average pressure over the precipitate varies with the orientation of the precip
This idea is motivated by the possibility that the molten phase seeps into low pres
regions of the olivine crystal (e.g., Darcy’s law) [16].

The actual quantity we calculate is the integral of the normal displacement over
precipitate—matrix interfaceug k). We justify this choice by noting that for an isotropic
material, this quantity is proportional to the average pressure with proportionality c
stant equal to the negative of the bulk modulus of the precipitate. In our @agsés not
exactly proportional to the pressure in the inclusion, since the elastic constants we
to describe the inclusion phase are not isotropic. However, as the precipitate is n
isotropic (A=0.91) and sincel x is easy to compute, we belieug is suitable as a trial
parameter.

We proceed as follows. We solve the elasticity equations for a single elliptical precipi
with arbitrary orientation under an applied biaxial stress and shear. We determine the ©
tation of the ellipse that achieves the minimum value-af, x as a function of the strength
of the applied shear. We refer to this as the “minimum pressure ellipse.” We then variec
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Comparison of Orientation of Min Pressure of Ellipse as function of Normalized Applied Shear
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FIG. 23. Static simulation. Orientation of minimum pressure ellipse versus normalized applied shear. Oli
matrix with soft, elliptical nearly isotropic precipitates. Three ellipses with different aspect ratios are conside

ratio of lengths of the major and minor axes of the ellipse from2:1t0 8: 1. In the results
follow, we usedN = 256 and the elasticity GMRES tolerance to-$0in Fig. 23, we plot
the orientation of the minimum pressure ellipse as a function of applied shear for sev
different aspect ratios. The orientation angle is measured with respect to the positise
with a horizontal ellipse having an orientation of 180 degrees. At zero applied shear,
minimum pressure ellipse is horizontal. As the applied shear is increased, the orient:
angle decreases rapidly and seems to asymptote to approximately 135 degrees. In ad
the orientation angle is a non-decreasing function of aspect ratio. Thus, for a given ap
shear, larger orientation angles are obtained for ellipses with larger aspect ratios. How
we note that the average pressure per unit area of the minimum pressure ellipse incr
with increasing aspect ratio.

To examine the effect of the elastic constants, we modify the constants correspon
to the olivine matrix by either enhancing the orthotropy or by making the matrix mc
isotropic. In order to enhance the orthotropy,(we setc;; = 5.0 while keeping the other
elastic coefficients fixed. In order to make the matrix more isotropjc e keepc;, and
Cx, fixed and set;; = 3.4. This givesA=0.96. Our results are shown in Fig. 24 for ar
ellipse with aspect ratio 2:1. Analogous results are obtained for other aspect ratios
observe that increasing the orthotropy increases the angle of the minimum pressure €
while increasing the isotropy makes the angle drop faster towards 135 degrees. In fact,
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FIG. 24. Static simulation. Orientation of minimum pressure ellipse versus normalized applied shear u
different matrix elastic constants. See text for details.

matrix were elastically isotropic, the minimum pressure ellipse is oriented at 135 deg
for all non-zero applied shears.

In the experiment shown in Fig. 21a the normalized applied steggfor1) is approxi-
mately 0.25. The dominant orientation angle observed in the experimentis 3 8@grees
as shown in Fig. 21b. Using the value 0.25 for the normalized shear, we predict oriente
angles of approximately 145 degrees for the 2: 1 ellipse, 148 degrees for the 5:1 ell
and 149 degrees for the 8:1 ellipse. Similar agreement has been found in experimel
which the olivine crystal is loaded in biaxial compression [5]. The fact that the predic
melt pocket orientations are consistent with experiments suggests that the orthotropic
acter of the olivine may be an important factor in determining the orientation of the n
pockets. Kohlstedt and Zimmerman are currently testing different experimental loac
configurations to determine whether the orientation of melt pockets changes with apj
shear as predicted in Figs. 23 and 24. We note, however, that there are many other ph
factors we do not model, e.g., plastic slip, polycrystallinity, permeability, and fluid flo
which likely play an important role in melt pocket alignment.

APPENDIX: PRECONDITIONING MATRIX FOR ELASTICITY

For completeness, we present the 4 matrix £ used to precondition the elasticity
integral equations in Fourier space.
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Fork £ 0, we have

1 isgnk)D;;  sgnk)gkEf; 0
o= —isgn(k)D{, 1 0 sgrk) ok ED ’
1 —isgn(k)Dy] —sgnk)gcE] 0
isgn(k) D} 1 0 —sgnk)okE

wheregy = s,/ k. Fork =0, we obtain

100
. 0100
LO=11 9 0 0o

0100

L71(k) fork #0is analytically constructed using Mathematica. Becal(® is not invert-

ib

ac

le, we set the zero modes to be zero.
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